Artificial Intelligence has suddenly gone from the fringes of science to being everywhere. So how did we get here? And where's this all heading? In this new series of Science Friction, we're finding out.
…
continue reading
Το περιεχόμενο παρέχεται από το The Thesis Review and Sean Welleck. Όλο το περιεχόμενο podcast, συμπεριλαμβανομένων των επεισοδίων, των γραφικών και των περιγραφών podcast, μεταφορτώνεται και παρέχεται απευθείας από τον The Thesis Review and Sean Welleck ή τον συνεργάτη της πλατφόρμας podcast. Εάν πιστεύετε ότι κάποιος χρησιμοποιεί το έργο σας που προστατεύεται από πνευματικά δικαιώματα χωρίς την άδειά σας, μπορείτε να ακολουθήσετε τη διαδικασία που περιγράφεται εδώ https://el.player.fm/legal.
Player FM - Εφαρμογή podcast
Πηγαίνετε εκτός σύνδεσης με την εφαρμογή Player FM !
Πηγαίνετε εκτός σύνδεσης με την εφαρμογή Player FM !
[29] Tengyu Ma - Non-convex Optimization for Machine Learning
MP3•Αρχική οθόνη επεισοδίου
Manage episode 302418416 series 2982803
Το περιεχόμενο παρέχεται από το The Thesis Review and Sean Welleck. Όλο το περιεχόμενο podcast, συμπεριλαμβανομένων των επεισοδίων, των γραφικών και των περιγραφών podcast, μεταφορτώνεται και παρέχεται απευθείας από τον The Thesis Review and Sean Welleck ή τον συνεργάτη της πλατφόρμας podcast. Εάν πιστεύετε ότι κάποιος χρησιμοποιεί το έργο σας που προστατεύεται από πνευματικά δικαιώματα χωρίς την άδειά σας, μπορείτε να ακολουθήσετε τη διαδικασία που περιγράφεται εδώ https://el.player.fm/legal.
Tengyu Ma is an Assistant Professor at Stanford University. His research focuses on deep learning and its theory, as well as various topics in machine learning. Tengyu's PhD thesis is titled "Non-convex Optimization for Machine Learning: Design, Analysis, and Understanding", which he completed in 2017 at Princeton University. We discuss theory in machine learning and deep learning, including the 'all local minima are global minima' property, overparameterization, as well as perspectives that theory takes on understanding deep learning. - Episode notes: https://cs.nyu.edu/~welleck/episode29.html - Follow the Thesis Review (@thesisreview) and Sean Welleck (@wellecks) on Twitter - Find out more info about the show at https://cs.nyu.edu/~welleck/podcast.html - Support The Thesis Review at www.patreon.com/thesisreview or www.buymeacoffee.com/thesisreview
…
continue reading
49 επεισόδια
MP3•Αρχική οθόνη επεισοδίου
Manage episode 302418416 series 2982803
Το περιεχόμενο παρέχεται από το The Thesis Review and Sean Welleck. Όλο το περιεχόμενο podcast, συμπεριλαμβανομένων των επεισοδίων, των γραφικών και των περιγραφών podcast, μεταφορτώνεται και παρέχεται απευθείας από τον The Thesis Review and Sean Welleck ή τον συνεργάτη της πλατφόρμας podcast. Εάν πιστεύετε ότι κάποιος χρησιμοποιεί το έργο σας που προστατεύεται από πνευματικά δικαιώματα χωρίς την άδειά σας, μπορείτε να ακολουθήσετε τη διαδικασία που περιγράφεται εδώ https://el.player.fm/legal.
Tengyu Ma is an Assistant Professor at Stanford University. His research focuses on deep learning and its theory, as well as various topics in machine learning. Tengyu's PhD thesis is titled "Non-convex Optimization for Machine Learning: Design, Analysis, and Understanding", which he completed in 2017 at Princeton University. We discuss theory in machine learning and deep learning, including the 'all local minima are global minima' property, overparameterization, as well as perspectives that theory takes on understanding deep learning. - Episode notes: https://cs.nyu.edu/~welleck/episode29.html - Follow the Thesis Review (@thesisreview) and Sean Welleck (@wellecks) on Twitter - Find out more info about the show at https://cs.nyu.edu/~welleck/podcast.html - Support The Thesis Review at www.patreon.com/thesisreview or www.buymeacoffee.com/thesisreview
…
continue reading
49 επεισόδια
所有剧集
×Καλώς ήλθατε στο Player FM!
Το FM Player σαρώνει τον ιστό για podcasts υψηλής ποιότητας για να απολαύσετε αυτή τη στιγμή. Είναι η καλύτερη εφαρμογή podcast και λειτουργεί σε Android, iPhone και στον ιστό. Εγγραφή για συγχρονισμό συνδρομών σε όλες τις συσκευές.