Artwork

Το περιεχόμενο παρέχεται από το The Nonlinear Fund. Όλο το περιεχόμενο podcast, συμπεριλαμβανομένων των επεισοδίων, των γραφικών και των περιγραφών podcast, μεταφορτώνεται και παρέχεται απευθείας από τον The Nonlinear Fund ή τον συνεργάτη της πλατφόρμας podcast. Εάν πιστεύετε ότι κάποιος χρησιμοποιεί το έργο σας που προστατεύεται από πνευματικά δικαιώματα χωρίς την άδειά σας, μπορείτε να ακολουθήσετε τη διαδικασία που περιγράφεται εδώ https://el.player.fm/legal.
Player FM - Εφαρμογή podcast
Πηγαίνετε εκτός σύνδεσης με την εφαρμογή Player FM !

AF - Take SCIFs, it's dangerous to go alone by latterframe

6:04
 
Μοίρασέ το
 

Manage episode 415829904 series 3337166
Το περιεχόμενο παρέχεται από το The Nonlinear Fund. Όλο το περιεχόμενο podcast, συμπεριλαμβανομένων των επεισοδίων, των γραφικών και των περιγραφών podcast, μεταφορτώνεται και παρέχεται απευθείας από τον The Nonlinear Fund ή τον συνεργάτη της πλατφόρμας podcast. Εάν πιστεύετε ότι κάποιος χρησιμοποιεί το έργο σας που προστατεύεται από πνευματικά δικαιώματα χωρίς την άδειά σας, μπορείτε να ακολουθήσετε τη διαδικασία που περιγράφεται εδώ https://el.player.fm/legal.
Link to original article
Welcome to The Nonlinear Library, where we use Text-to-Speech software to convert the best writing from the Rationalist and EA communities into audio. This is: Take SCIFs, it's dangerous to go alone, published by latterframe on May 1, 2024 on The AI Alignment Forum. Coauthored by Dmitrii Volkov1, Christian Schroeder de Witt2, Jeffrey Ladish1 (1Palisade Research, 2University of Oxford). We explore how frontier AI labs could assimilate operational security (opsec) best practices from fields like nuclear energy and construction to mitigate near-term safety risks stemming from AI R&D process compromise. Such risks in the near-term include model weight leaks and backdoor insertion, and loss of control in the longer-term. We discuss the Mistral and LLaMA model leaks as motivating examples and propose two classic opsec mitigations: performing AI audits in secure reading rooms (SCIFs) and using locked-down computers for frontier AI research. Mistral model leak In January 2024, a high-quality 70B LLM leaked from Mistral. Reporting suggests the model leaked through an external evaluation or product design process. That is, Mistral shared the full model with a few other companies and one of their employees leaked the model. Then there's LLaMA which was supposed to be slowly released to researchers and partners, and leaked on 4chan a week after the announcement[1], sparking a wave of open LLM innovation. Potential industry response Industry might respond to incidents like this[2] by providing external auditors, evaluation organizations, or business partners with API access only, maybe further locking it down with query / download / entropy limits to prevent distillation. This mitigation is effective in terms of preventing model leaks, but is too strong - blackbox AI access is insufficient for quality audits. Blackbox methods tend to be ad-hoc, heuristic and shallow, making them unreliable in finding adversarial inputs and biases and limited in eliciting capabilities. Interpretability work is almost impossible without gradient access. So we are at an impasse - we want to give auditors weights access so they can do quality audits, but this risks the model getting leaked. Even if eventual leaks might not be preventable, at least we would wish to delay leakage for as long as possible and practice defense in depth. While we are currently working on advanced versions of rate limiting involving limiting entropy / differential privacy budget to allow secure remote model access, in this proposal we suggest something different: importing physical opsec security measures from other high-stakes fields. SCIFs / secure reading rooms Aerospace, nuclear, intelligence and other high-stakes fields routinely employ special secure facilities for work with sensitive information. Entering the facility typically requires surrendering your phone and belongings; the facility is sound- and EM-proofed and regularly inspected for any devices left inside; it has armed guards. This design makes it hard to get any data out while allowing full access inside, which fits the audit use case very well. An emerging field of deep learning cryptography aims to cover some of the same issues SCIFs address; however, scaling complex cryptography to state-of-the-art AI is an open research question. SCIFs are a simple and robust technology that gives a lot of security for a little investment. Just how little? There are two main costs to SCIFs: maintenance and inconvenience. First, a SCIF must be built and maintained[3]. Second, it's less convenient for an auditor to work from a SCIF then from the comfort of their home[4]. Our current belief is that SCIFs can easily be cost-effective if placed in AI hubs and universities[5]; we defer concrete cost analysis to future work. Locked-down laptops SCIFs are designed to limit unintended information flow: auditors are free to work as they wish inside, but can't take information stores like paper or flash drives in or out. A softer physica...
  continue reading

385 επεισόδια

Artwork
iconΜοίρασέ το
 
Manage episode 415829904 series 3337166
Το περιεχόμενο παρέχεται από το The Nonlinear Fund. Όλο το περιεχόμενο podcast, συμπεριλαμβανομένων των επεισοδίων, των γραφικών και των περιγραφών podcast, μεταφορτώνεται και παρέχεται απευθείας από τον The Nonlinear Fund ή τον συνεργάτη της πλατφόρμας podcast. Εάν πιστεύετε ότι κάποιος χρησιμοποιεί το έργο σας που προστατεύεται από πνευματικά δικαιώματα χωρίς την άδειά σας, μπορείτε να ακολουθήσετε τη διαδικασία που περιγράφεται εδώ https://el.player.fm/legal.
Link to original article
Welcome to The Nonlinear Library, where we use Text-to-Speech software to convert the best writing from the Rationalist and EA communities into audio. This is: Take SCIFs, it's dangerous to go alone, published by latterframe on May 1, 2024 on The AI Alignment Forum. Coauthored by Dmitrii Volkov1, Christian Schroeder de Witt2, Jeffrey Ladish1 (1Palisade Research, 2University of Oxford). We explore how frontier AI labs could assimilate operational security (opsec) best practices from fields like nuclear energy and construction to mitigate near-term safety risks stemming from AI R&D process compromise. Such risks in the near-term include model weight leaks and backdoor insertion, and loss of control in the longer-term. We discuss the Mistral and LLaMA model leaks as motivating examples and propose two classic opsec mitigations: performing AI audits in secure reading rooms (SCIFs) and using locked-down computers for frontier AI research. Mistral model leak In January 2024, a high-quality 70B LLM leaked from Mistral. Reporting suggests the model leaked through an external evaluation or product design process. That is, Mistral shared the full model with a few other companies and one of their employees leaked the model. Then there's LLaMA which was supposed to be slowly released to researchers and partners, and leaked on 4chan a week after the announcement[1], sparking a wave of open LLM innovation. Potential industry response Industry might respond to incidents like this[2] by providing external auditors, evaluation organizations, or business partners with API access only, maybe further locking it down with query / download / entropy limits to prevent distillation. This mitigation is effective in terms of preventing model leaks, but is too strong - blackbox AI access is insufficient for quality audits. Blackbox methods tend to be ad-hoc, heuristic and shallow, making them unreliable in finding adversarial inputs and biases and limited in eliciting capabilities. Interpretability work is almost impossible without gradient access. So we are at an impasse - we want to give auditors weights access so they can do quality audits, but this risks the model getting leaked. Even if eventual leaks might not be preventable, at least we would wish to delay leakage for as long as possible and practice defense in depth. While we are currently working on advanced versions of rate limiting involving limiting entropy / differential privacy budget to allow secure remote model access, in this proposal we suggest something different: importing physical opsec security measures from other high-stakes fields. SCIFs / secure reading rooms Aerospace, nuclear, intelligence and other high-stakes fields routinely employ special secure facilities for work with sensitive information. Entering the facility typically requires surrendering your phone and belongings; the facility is sound- and EM-proofed and regularly inspected for any devices left inside; it has armed guards. This design makes it hard to get any data out while allowing full access inside, which fits the audit use case very well. An emerging field of deep learning cryptography aims to cover some of the same issues SCIFs address; however, scaling complex cryptography to state-of-the-art AI is an open research question. SCIFs are a simple and robust technology that gives a lot of security for a little investment. Just how little? There are two main costs to SCIFs: maintenance and inconvenience. First, a SCIF must be built and maintained[3]. Second, it's less convenient for an auditor to work from a SCIF then from the comfort of their home[4]. Our current belief is that SCIFs can easily be cost-effective if placed in AI hubs and universities[5]; we defer concrete cost analysis to future work. Locked-down laptops SCIFs are designed to limit unintended information flow: auditors are free to work as they wish inside, but can't take information stores like paper or flash drives in or out. A softer physica...
  continue reading

385 επεισόδια

Όλα τα επεισόδια

×
 
Loading …

Καλώς ήλθατε στο Player FM!

Το FM Player σαρώνει τον ιστό για podcasts υψηλής ποιότητας για να απολαύσετε αυτή τη στιγμή. Είναι η καλύτερη εφαρμογή podcast και λειτουργεί σε Android, iPhone και στον ιστό. Εγγραφή για συγχρονισμό συνδρομών σε όλες τις συσκευές.

 

Οδηγός γρήγορης αναφοράς