Artwork

Το περιεχόμενο παρέχεται από το The Data Flowcast. Όλο το περιεχόμενο podcast, συμπεριλαμβανομένων των επεισοδίων, των γραφικών και των περιγραφών podcast, μεταφορτώνεται και παρέχεται απευθείας από τον The Data Flowcast ή τον συνεργάτη της πλατφόρμας podcast. Εάν πιστεύετε ότι κάποιος χρησιμοποιεί το έργο σας που προστατεύεται από πνευματικά δικαιώματα χωρίς την άδειά σας, μπορείτε να ακολουθήσετε τη διαδικασία που περιγράφεται εδώ https://el.player.fm/legal.
Player FM - Εφαρμογή podcast
Πηγαίνετε εκτός σύνδεσης με την εφαρμογή Player FM !

Scaling Airflow to 11,000 DAGs Across Three Regions at Intercom with András Gombosi and Paul Vickers

34:24
 
Μοίρασέ το
 

Manage episode 522613252 series 2948506
Το περιεχόμενο παρέχεται από το The Data Flowcast. Όλο το περιεχόμενο podcast, συμπεριλαμβανομένων των επεισοδίων, των γραφικών και των περιγραφών podcast, μεταφορτώνεται και παρέχεται απευθείας από τον The Data Flowcast ή τον συνεργάτη της πλατφόρμας podcast. Εάν πιστεύετε ότι κάποιος χρησιμοποιεί το έργο σας που προστατεύεται από πνευματικά δικαιώματα χωρίς την άδειά σας, μπορείτε να ακολουθήσετε τη διαδικασία που περιγράφεται εδώ https://el.player.fm/legal.

The evolution of Intercom’s data infrastructure reveals how a well-built orchestration system can scale to serve global needs. With thousands of DAGs powering analytics, AI and customer operations, the team’s approach combines technical depth with organizational insight.

In this episode, András Gombosi, Senior Engineering Manager of Data Infra and Analytics Engineering, and Paul Vickers, Principal Engineer, both at Intercom, share how they built one of the largest Airflow deployments in production and enabled self-serve data platforms across teams.

Key Takeaways:

00:00 Introduction.

04:24 Community input encourages confident adoption of a common platform.

08:50 Self-serve workflows require consistent guardrails and review.

09:25 Internal infrastructure support accelerates scalable deployments.

13:26 Batch LLM processing benefits from a configuration-driven design.

15:20 Standardized development environments enable effective AI-assisted work.

19:58 Applied AI enhances internal analysis and operational enablement.

27:27 Strong test coverage and staged upgrades protect stability.

30:36 Proactive observability and on-call ownership improve outcomes.

Resources Mentioned:

András Gombosi

https://www.linkedin.com/in/andrasgombosi/

Paul Vickers

https://www.linkedin.com/in/paul-vickers-a22b76a3/

Intercom | LinkedIn

https://www.linkedin.com/company/intercom/

Intercom | Website

https://www.intercom.com

Apache Airflow

https://airflow.apache.org/

dbtLabs

https://www.getdbt.com/

Snowflake Cortex AI

https://www.snowflake.com/en/product/features/cortex/

Datadog

https://www.datadoghq.com/

Thanks for listening to “The Data Flowcast: Mastering Apache Airflow® for Data Engineering and AI.” If you enjoyed this episode, please leave a 5-star review to help get the word out about the show. And be sure to subscribe so you never miss any of the insightful conversations.

#AI #Automation #Airflow

  continue reading

82 επεισόδια

Artwork
iconΜοίρασέ το
 
Manage episode 522613252 series 2948506
Το περιεχόμενο παρέχεται από το The Data Flowcast. Όλο το περιεχόμενο podcast, συμπεριλαμβανομένων των επεισοδίων, των γραφικών και των περιγραφών podcast, μεταφορτώνεται και παρέχεται απευθείας από τον The Data Flowcast ή τον συνεργάτη της πλατφόρμας podcast. Εάν πιστεύετε ότι κάποιος χρησιμοποιεί το έργο σας που προστατεύεται από πνευματικά δικαιώματα χωρίς την άδειά σας, μπορείτε να ακολουθήσετε τη διαδικασία που περιγράφεται εδώ https://el.player.fm/legal.

The evolution of Intercom’s data infrastructure reveals how a well-built orchestration system can scale to serve global needs. With thousands of DAGs powering analytics, AI and customer operations, the team’s approach combines technical depth with organizational insight.

In this episode, András Gombosi, Senior Engineering Manager of Data Infra and Analytics Engineering, and Paul Vickers, Principal Engineer, both at Intercom, share how they built one of the largest Airflow deployments in production and enabled self-serve data platforms across teams.

Key Takeaways:

00:00 Introduction.

04:24 Community input encourages confident adoption of a common platform.

08:50 Self-serve workflows require consistent guardrails and review.

09:25 Internal infrastructure support accelerates scalable deployments.

13:26 Batch LLM processing benefits from a configuration-driven design.

15:20 Standardized development environments enable effective AI-assisted work.

19:58 Applied AI enhances internal analysis and operational enablement.

27:27 Strong test coverage and staged upgrades protect stability.

30:36 Proactive observability and on-call ownership improve outcomes.

Resources Mentioned:

András Gombosi

https://www.linkedin.com/in/andrasgombosi/

Paul Vickers

https://www.linkedin.com/in/paul-vickers-a22b76a3/

Intercom | LinkedIn

https://www.linkedin.com/company/intercom/

Intercom | Website

https://www.intercom.com

Apache Airflow

https://airflow.apache.org/

dbtLabs

https://www.getdbt.com/

Snowflake Cortex AI

https://www.snowflake.com/en/product/features/cortex/

Datadog

https://www.datadoghq.com/

Thanks for listening to “The Data Flowcast: Mastering Apache Airflow® for Data Engineering and AI.” If you enjoyed this episode, please leave a 5-star review to help get the word out about the show. And be sure to subscribe so you never miss any of the insightful conversations.

#AI #Automation #Airflow

  continue reading

82 επεισόδια

Όλα τα επεισόδια

×
 
Loading …

Καλώς ήλθατε στο Player FM!

Το FM Player σαρώνει τον ιστό για podcasts υψηλής ποιότητας για να απολαύσετε αυτή τη στιγμή. Είναι η καλύτερη εφαρμογή podcast και λειτουργεί σε Android, iPhone και στον ιστό. Εγγραφή για συγχρονισμό συνδρομών σε όλες τις συσκευές.

 

Οδηγός γρήγορης αναφοράς

Ακούστε αυτήν την εκπομπή ενώ εξερευνάτε
Αναπαραγωγή