Artwork

Το περιεχόμενο παρέχεται από το Brian Carter. Όλο το περιεχόμενο podcast, συμπεριλαμβανομένων των επεισοδίων, των γραφικών και των περιγραφών podcast, μεταφορτώνεται και παρέχεται απευθείας από τον Brian Carter ή τον συνεργάτη της πλατφόρμας podcast. Εάν πιστεύετε ότι κάποιος χρησιμοποιεί το έργο σας που προστατεύεται από πνευματικά δικαιώματα χωρίς την άδειά σας, μπορείτε να ακολουθήσετε τη διαδικασία που περιγράφεται εδώ https://el.player.fm/legal.
Player FM - Εφαρμογή podcast
Πηγαίνετε εκτός σύνδεσης με την εφαρμογή Player FM !

AI in Dentistry: Reading Intraoral Radiographs

5:13
 
Μοίρασέ το
 

Manage episode 444599860 series 3605861
Το περιεχόμενο παρέχεται από το Brian Carter. Όλο το περιεχόμενο podcast, συμπεριλαμβανομένων των επεισοδίων, των γραφικών και των περιγραφών podcast, μεταφορτώνεται και παρέχεται απευθείας από τον Brian Carter ή τον συνεργάτη της πλατφόρμας podcast. Εάν πιστεύετε ότι κάποιος χρησιμοποιεί το έργο σας που προστατεύεται από πνευματικά δικαιώματα χωρίς την άδειά σας, μπορείτε να ακολουθήσετε τη διαδικασία που περιγράφεται εδώ https://el.player.fm/legal.

This article describes a clinical validation study that investigates the effectiveness of a deep learning algorithm for detecting dental anomalies in intraoral radiographs. The algorithm is trained to detect six common anomaly types and is compared to the performance of dentists who evaluate the images without algorithmic assistance. The study utilizes a paired data approach where each image is evaluated twice by the same dentist, once with and once without the algorithm. The researchers employ statistical analysis, including McNemar's test and the binomial hypothesis test, to assess the algorithm's impact on sensitivity and specificity. The results demonstrate a significant increase in sensitivity and a slight decrease in specificity when the deep learning algorithm is used for diagnostic guidance. Additionally, the area under the localization ROC curve (AUC) also shows a significant increase, further supporting the algorithm's effectiveness. The study concludes that the deep learning algorithm significantly enhances the detection of dental anomalies, providing valuable diagnostic assistance for dentists.

Read more: https://arxiv.org/abs/2402.14022v1
  continue reading

71 επεισόδια

Artwork
iconΜοίρασέ το
 
Manage episode 444599860 series 3605861
Το περιεχόμενο παρέχεται από το Brian Carter. Όλο το περιεχόμενο podcast, συμπεριλαμβανομένων των επεισοδίων, των γραφικών και των περιγραφών podcast, μεταφορτώνεται και παρέχεται απευθείας από τον Brian Carter ή τον συνεργάτη της πλατφόρμας podcast. Εάν πιστεύετε ότι κάποιος χρησιμοποιεί το έργο σας που προστατεύεται από πνευματικά δικαιώματα χωρίς την άδειά σας, μπορείτε να ακολουθήσετε τη διαδικασία που περιγράφεται εδώ https://el.player.fm/legal.

This article describes a clinical validation study that investigates the effectiveness of a deep learning algorithm for detecting dental anomalies in intraoral radiographs. The algorithm is trained to detect six common anomaly types and is compared to the performance of dentists who evaluate the images without algorithmic assistance. The study utilizes a paired data approach where each image is evaluated twice by the same dentist, once with and once without the algorithm. The researchers employ statistical analysis, including McNemar's test and the binomial hypothesis test, to assess the algorithm's impact on sensitivity and specificity. The results demonstrate a significant increase in sensitivity and a slight decrease in specificity when the deep learning algorithm is used for diagnostic guidance. Additionally, the area under the localization ROC curve (AUC) also shows a significant increase, further supporting the algorithm's effectiveness. The study concludes that the deep learning algorithm significantly enhances the detection of dental anomalies, providing valuable diagnostic assistance for dentists.

Read more: https://arxiv.org/abs/2402.14022v1
  continue reading

71 επεισόδια

Όλα τα επεισόδια

×
 
Loading …

Καλώς ήλθατε στο Player FM!

Το FM Player σαρώνει τον ιστό για podcasts υψηλής ποιότητας για να απολαύσετε αυτή τη στιγμή. Είναι η καλύτερη εφαρμογή podcast και λειτουργεί σε Android, iPhone και στον ιστό. Εγγραφή για συγχρονισμό συνδρομών σε όλες τις συσκευές.

 

Οδηγός γρήγορης αναφοράς