Artwork

Το περιεχόμενο παρέχεται από το Skyflow. Όλο το περιεχόμενο podcast, συμπεριλαμβανομένων των επεισοδίων, των γραφικών και των περιγραφών podcast, μεταφορτώνεται και παρέχεται απευθείας από τον Skyflow ή τον συνεργάτη της πλατφόρμας podcast. Εάν πιστεύετε ότι κάποιος χρησιμοποιεί το έργο σας που προστατεύεται από πνευματικά δικαιώματα χωρίς την άδειά σας, μπορείτε να ακολουθήσετε τη διαδικασία που περιγράφεται εδώ https://el.player.fm/legal.
Player FM - Εφαρμογή podcast
Πηγαίνετε εκτός σύνδεσης με την εφαρμογή Player FM !

Balancing Innovation and Responsibility in AI/ML Deployment with Jozu's Brad Micklea

43:50
 
Μοίρασέ το
 

Manage episode 412992979 series 3386287
Το περιεχόμενο παρέχεται από το Skyflow. Όλο το περιεχόμενο podcast, συμπεριλαμβανομένων των επεισοδίων, των γραφικών και των περιγραφών podcast, μεταφορτώνεται και παρέχεται απευθείας από τον Skyflow ή τον συνεργάτη της πλατφόρμας podcast. Εάν πιστεύετε ότι κάποιος χρησιμοποιεί το έργο σας που προστατεύεται από πνευματικά δικαιώματα χωρίς την άδειά σας, μπορείτε να ακολουθήσετε τη διαδικασία που περιγράφεται εδώ https://el.player.fm/legal.

In this episode, we dive into the world of MLOps, the engine behind secure and reliable AI/ML deployments. MLOps focuses on the lifecycle of machine learning models, ensuring they are developed and deployed efficiently and responsibly.

With the explosion of ML applications, the demand for specialized tools has skyrocketed, highlighting the need for improved observability, auditing, and reproducibility. This shift necessitates an evolution in ML toolchains to address gaps in security, governance, and reliability.

Jozu is a platform founded to tackle these very challenges by enhancing the collaboration between AI/ML and application development teams. Jozu aims to provide a comprehensive suite of tools focusing on efficiency throughout the model development and deployment process.

This conversation discusses the importance of MLOps, the limitations of current tools, and how Jozu is paving the way for the future of secure and reliable ML deployments.

Resources:

  continue reading

76 επεισόδια

Artwork
iconΜοίρασέ το
 
Manage episode 412992979 series 3386287
Το περιεχόμενο παρέχεται από το Skyflow. Όλο το περιεχόμενο podcast, συμπεριλαμβανομένων των επεισοδίων, των γραφικών και των περιγραφών podcast, μεταφορτώνεται και παρέχεται απευθείας από τον Skyflow ή τον συνεργάτη της πλατφόρμας podcast. Εάν πιστεύετε ότι κάποιος χρησιμοποιεί το έργο σας που προστατεύεται από πνευματικά δικαιώματα χωρίς την άδειά σας, μπορείτε να ακολουθήσετε τη διαδικασία που περιγράφεται εδώ https://el.player.fm/legal.

In this episode, we dive into the world of MLOps, the engine behind secure and reliable AI/ML deployments. MLOps focuses on the lifecycle of machine learning models, ensuring they are developed and deployed efficiently and responsibly.

With the explosion of ML applications, the demand for specialized tools has skyrocketed, highlighting the need for improved observability, auditing, and reproducibility. This shift necessitates an evolution in ML toolchains to address gaps in security, governance, and reliability.

Jozu is a platform founded to tackle these very challenges by enhancing the collaboration between AI/ML and application development teams. Jozu aims to provide a comprehensive suite of tools focusing on efficiency throughout the model development and deployment process.

This conversation discusses the importance of MLOps, the limitations of current tools, and how Jozu is paving the way for the future of secure and reliable ML deployments.

Resources:

  continue reading

76 επεισόδια

Όλα τα επεισόδια

×
 
Loading …

Καλώς ήλθατε στο Player FM!

Το FM Player σαρώνει τον ιστό για podcasts υψηλής ποιότητας για να απολαύσετε αυτή τη στιγμή. Είναι η καλύτερη εφαρμογή podcast και λειτουργεί σε Android, iPhone και στον ιστό. Εγγραφή για συγχρονισμό συνδρομών σε όλες τις συσκευές.

 

Οδηγός γρήγορης αναφοράς