Artwork

Το περιεχόμενο παρέχεται από το Денис, Ігор, Саша. Όλο το περιεχόμενο podcast, συμπεριλαμβανομένων των επεισοδίων, των γραφικών και των περιγραφών podcast, μεταφορτώνεται και παρέχεται απευθείας από τον Денис, Ігор, Саша ή τον συνεργάτη της πλατφόρμας podcast. Εάν πιστεύετε ότι κάποιος χρησιμοποιεί το έργο σας που προστατεύεται από πνευματικά δικαιώματα χωρίς την άδειά σας, μπορείτε να ακολουθήσετε τη διαδικασία που περιγράφεται εδώ https://el.player.fm/legal.
Player FM - Εφαρμογή podcast
Πηγαίνετε εκτός σύνδεσης με την εφαρμογή Player FM !

№41: Рекомендаційні системи, ч.1. CTO про побудову рекомендаційних систем, їх складові і оцінку якості.

57:29
 
Μοίρασέ το
 

Manage episode 364374416 series 3361795
Το περιεχόμενο παρέχεται από το Денис, Ігор, Саша. Όλο το περιεχόμενο podcast, συμπεριλαμβανομένων των επεισοδίων, των γραφικών και των περιγραφών podcast, μεταφορτώνεται και παρέχεται απευθείας από τον Денис, Ігор, Саша ή τον συνεργάτη της πλατφόρμας podcast. Εάν πιστεύετε ότι κάποιος χρησιμοποιεί το έργο σας που προστατεύεται από πνευματικά δικαιώματα χωρίς την άδειά σας, μπορείτε να ακολουθήσετε τη διαδικασία που περιγράφεται εδώ https://el.player.fm/legal.

В гостях Дмитро Войтех, СТО @ S-PRO

🔞 Тут будуть матюки 🔞

Робочі посилання і коментарі в каналі ⁠⁠⁠⁠⁠⁠⁠⁠⁠https://t.me/midnight_chatter⁠

  • 0:00-0:30 Інтро
  • 0:30 - 1:18 — рекомендаційна система для банок на донати - поповнюйте рахунки Повернись Живим
  • 1:19 - 5:45 — Дмитро (ex-Giphy, CTO@S-PRO) розказує, чому він хороша людина на поговорити про рекомендаційні системи
  • 5:46 - 8:10 — чутки про те, в який ML/AI хочуть вкладати гроші європейські компанії
  • 8:10 - 11:43 — визначимо проблему рекомендацій, говоримо про задачу отримання інформації (information retrieval)
  • 11:44 - 12:20 — чому задачу рекомендацій варто розбивати на підсистеми
  • 12:21 - 17:15 — candidate generation – бази даних, векторні індекси, текстові індекси
  • 17:16 - 19:20 — що таке precision та recall, скільки потрібно сіньйорів…
  • 19:21 - 22:20 — чому фільтрувати кандидатів в рекомендації є хорошою ідеєю
  • 22:21 - 30:50 — на чому тренувати рекомендаційну систему: не забудьте полайкати наш подкаст на вашій улюбленій платформі!
  • 30:51 - 40:45 – для чого потрібні офлайн та онлайн метрики; роздумуємо про інтуїцію метрик для оцінки якості рекомендацій
  • 40:46 - 46:50 — чому Mean Reciprocal Rank (MRR) — ймовірно, не найкращий вибір для метрики, говоримо про Expected Reciprocal Rank (ERR) — чому структура гріда рекомендацій має значення
  • 46:51 - 47:45 – Click Through Rate (CTR)
  • 47:46 - 49:55 — говоримо про customer satisfaction та функції втрат для тренування рекомендаційної системи
  • 49:56 - 55:28 — проблема feedback loop, exploration vs exploitation, рандомізуємо рекомендації; багаторукі бандити
  • 55:29 - 57:28 — робимо паузу; оутро і канал 'Kyiv Data Science’; чекайте продовження в наступному випуску!

Долучайтесь до наших соцмереж:

Музика: ⁠⁠⁠⁠⁠⁠⁠⁠⁠https://www.streambeats.com/⁠⁠⁠⁠⁠⁠⁠⁠⁠ | ⁠⁠⁠⁠⁠⁠⁠⁠⁠@stasgavrylov

  continue reading

47 επεισόδια

Artwork
iconΜοίρασέ το
 
Manage episode 364374416 series 3361795
Το περιεχόμενο παρέχεται από το Денис, Ігор, Саша. Όλο το περιεχόμενο podcast, συμπεριλαμβανομένων των επεισοδίων, των γραφικών και των περιγραφών podcast, μεταφορτώνεται και παρέχεται απευθείας από τον Денис, Ігор, Саша ή τον συνεργάτη της πλατφόρμας podcast. Εάν πιστεύετε ότι κάποιος χρησιμοποιεί το έργο σας που προστατεύεται από πνευματικά δικαιώματα χωρίς την άδειά σας, μπορείτε να ακολουθήσετε τη διαδικασία που περιγράφεται εδώ https://el.player.fm/legal.

В гостях Дмитро Войтех, СТО @ S-PRO

🔞 Тут будуть матюки 🔞

Робочі посилання і коментарі в каналі ⁠⁠⁠⁠⁠⁠⁠⁠⁠https://t.me/midnight_chatter⁠

  • 0:00-0:30 Інтро
  • 0:30 - 1:18 — рекомендаційна система для банок на донати - поповнюйте рахунки Повернись Живим
  • 1:19 - 5:45 — Дмитро (ex-Giphy, CTO@S-PRO) розказує, чому він хороша людина на поговорити про рекомендаційні системи
  • 5:46 - 8:10 — чутки про те, в який ML/AI хочуть вкладати гроші європейські компанії
  • 8:10 - 11:43 — визначимо проблему рекомендацій, говоримо про задачу отримання інформації (information retrieval)
  • 11:44 - 12:20 — чому задачу рекомендацій варто розбивати на підсистеми
  • 12:21 - 17:15 — candidate generation – бази даних, векторні індекси, текстові індекси
  • 17:16 - 19:20 — що таке precision та recall, скільки потрібно сіньйорів…
  • 19:21 - 22:20 — чому фільтрувати кандидатів в рекомендації є хорошою ідеєю
  • 22:21 - 30:50 — на чому тренувати рекомендаційну систему: не забудьте полайкати наш подкаст на вашій улюбленій платформі!
  • 30:51 - 40:45 – для чого потрібні офлайн та онлайн метрики; роздумуємо про інтуїцію метрик для оцінки якості рекомендацій
  • 40:46 - 46:50 — чому Mean Reciprocal Rank (MRR) — ймовірно, не найкращий вибір для метрики, говоримо про Expected Reciprocal Rank (ERR) — чому структура гріда рекомендацій має значення
  • 46:51 - 47:45 – Click Through Rate (CTR)
  • 47:46 - 49:55 — говоримо про customer satisfaction та функції втрат для тренування рекомендаційної системи
  • 49:56 - 55:28 — проблема feedback loop, exploration vs exploitation, рандомізуємо рекомендації; багаторукі бандити
  • 55:29 - 57:28 — робимо паузу; оутро і канал 'Kyiv Data Science’; чекайте продовження в наступному випуску!

Долучайтесь до наших соцмереж:

Музика: ⁠⁠⁠⁠⁠⁠⁠⁠⁠https://www.streambeats.com/⁠⁠⁠⁠⁠⁠⁠⁠⁠ | ⁠⁠⁠⁠⁠⁠⁠⁠⁠@stasgavrylov

  continue reading

47 επεισόδια

همه قسمت ها

×
 
Loading …

Καλώς ήλθατε στο Player FM!

Το FM Player σαρώνει τον ιστό για podcasts υψηλής ποιότητας για να απολαύσετε αυτή τη στιγμή. Είναι η καλύτερη εφαρμογή podcast και λειτουργεί σε Android, iPhone και στον ιστό. Εγγραφή για συγχρονισμό συνδρομών σε όλες τις συσκευές.

 

Οδηγός γρήγορης αναφοράς

Ακούστε αυτήν την εκπομπή ενώ εξερευνάτε
Αναπαραγωγή