Artwork

Το περιεχόμενο παρέχεται από το Machine Learning Street Talk (MLST). Όλο το περιεχόμενο podcast, συμπεριλαμβανομένων των επεισοδίων, των γραφικών και των περιγραφών podcast, μεταφορτώνεται και παρέχεται απευθείας από τον Machine Learning Street Talk (MLST) ή τον συνεργάτη της πλατφόρμας podcast. Εάν πιστεύετε ότι κάποιος χρησιμοποιεί το έργο σας που προστατεύεται από πνευματικά δικαιώματα χωρίς την άδειά σας, μπορείτε να ακολουθήσετε τη διαδικασία που περιγράφεται εδώ https://el.player.fm/legal.
Player FM - Εφαρμογή podcast
Πηγαίνετε εκτός σύνδεσης με την εφαρμογή Player FM !

The Fractured Entangled Representation Hypothesis (Intro)

15:45
 
Μοίρασέ το
 

Manage episode 492808265 series 2803422
Το περιεχόμενο παρέχεται από το Machine Learning Street Talk (MLST). Όλο το περιεχόμενο podcast, συμπεριλαμβανομένων των επεισοδίων, των γραφικών και των περιγραφών podcast, μεταφορτώνεται και παρέχεται απευθείας από τον Machine Learning Street Talk (MLST) ή τον συνεργάτη της πλατφόρμας podcast. Εάν πιστεύετε ότι κάποιος χρησιμοποιεί το έργο σας που προστατεύεται από πνευματικά δικαιώματα χωρίς την άδειά σας, μπορείτε να ακολουθήσετε τη διαδικασία που περιγράφεται εδώ https://el.player.fm/legal.

What if today's incredible AI is just a brilliant "impostor"? This episode features host Dr. Tim Scarfe in conversation with guests Prof. Kenneth Stanley (ex-OpenAI), Dr. Keith Duggar (MIT), and Arkash Kumar (MIT).While AI today produces amazing results on the surface, its internal understanding is a complete mess, described as "total spaghetti" [00:00:49]. This is because it's trained with a brute-force method (SGD) that’s like building a sandcastle: it looks right from a distance, but has no real structure holding it together [00:01:45].To explain the difference, Keith Duggar shares a great analogy about his high school physics classes [00:03:18]. One class was about memorizing lots of formulas for specific situations (like the "impostor" AI). The other used calculus to derive the answers from a deeper understanding, which was much easier and more powerful. This is the core difference: one method memorizes, the other truly understands.The episode then introduces a different, more powerful way to build AI, based on Kenneth Stanley's old experiment, "Picbreeder" [00:04:45]. This method creates AI with a shockingly clean and intuitive internal model of the world. For example, it might develop a model of a skull where it understands the "mouth" as a separate component it can open and close, without ever being explicitly trained on that action [00:06:15]. This deep understanding emerges bottom-up, without massive datasets.The secret is to abandon a fixed goal and embrace "deception" [00:08:42]—the idea that the stepping stones to a great discovery often don't look anything like the final result. Instead of optimizing for a target, the AI is built through an open-ended process of exploring what's "interesting" [00:09:15]. This creates a more flexible and adaptable foundation, a bit like how evolvability wins out in nature [00:10:30].The show concludes by arguing that this choice matters immensely. The "impostor" path may be hitting a wall, requiring insane amounts of money and energy for progress and failing to deliver true creativity or continual learning [00:13:00]. The ultimate message is a call to not put all our eggs in one basket [00:14:25]. We should explore these open-ended, creative paths to discover a more genuine form of intelligence, which may be found where we least expect it.REFS:Questioning Representational Optimism in Deep Learning:The Fractured Entangled Representation HypothesisAkarsh Kumar, Jeff Clune, Joel Lehman, Kenneth O. Stanleyhttps://arxiv.org/pdf/2505.11581Kenneth O. Stanley, Joel LehmanWhy Greatness Cannot Be Planned: The Myth of the Objectivehttps://amzn.to/44xLaXKOriginal show with Kenneth from 4 years ago:https://www.youtube.com/watch?v=lhYGXYeMq_EKenneth Stanley is SVP Open Endedness at Lila Scienceshttps://x.com/kenneth0stanleyAkarsh Kumar (MIT)https://akarshkumar.com/AND... Kenneth is HIRING (this is an OPPORTUNITY OF A LIFETIME!)Research Engineer: https://job-boards.greenhouse.io/lila/jobs/7890007002Research Scientist: https://job-boards.greenhouse.io/lila/jobs/8012245002Tim's Code visualisation of FER based on Akarsh repo: https://github.com/ecsplendid/ferTRANSCRIPT: https://app.rescript.info/public/share/YKAZzZ6lwZkjTLRpVJreOOxGhLI8y4m3fAyU8NSavx0

  continue reading

238 επεισόδια

Artwork
iconΜοίρασέ το
 
Manage episode 492808265 series 2803422
Το περιεχόμενο παρέχεται από το Machine Learning Street Talk (MLST). Όλο το περιεχόμενο podcast, συμπεριλαμβανομένων των επεισοδίων, των γραφικών και των περιγραφών podcast, μεταφορτώνεται και παρέχεται απευθείας από τον Machine Learning Street Talk (MLST) ή τον συνεργάτη της πλατφόρμας podcast. Εάν πιστεύετε ότι κάποιος χρησιμοποιεί το έργο σας που προστατεύεται από πνευματικά δικαιώματα χωρίς την άδειά σας, μπορείτε να ακολουθήσετε τη διαδικασία που περιγράφεται εδώ https://el.player.fm/legal.

What if today's incredible AI is just a brilliant "impostor"? This episode features host Dr. Tim Scarfe in conversation with guests Prof. Kenneth Stanley (ex-OpenAI), Dr. Keith Duggar (MIT), and Arkash Kumar (MIT).While AI today produces amazing results on the surface, its internal understanding is a complete mess, described as "total spaghetti" [00:00:49]. This is because it's trained with a brute-force method (SGD) that’s like building a sandcastle: it looks right from a distance, but has no real structure holding it together [00:01:45].To explain the difference, Keith Duggar shares a great analogy about his high school physics classes [00:03:18]. One class was about memorizing lots of formulas for specific situations (like the "impostor" AI). The other used calculus to derive the answers from a deeper understanding, which was much easier and more powerful. This is the core difference: one method memorizes, the other truly understands.The episode then introduces a different, more powerful way to build AI, based on Kenneth Stanley's old experiment, "Picbreeder" [00:04:45]. This method creates AI with a shockingly clean and intuitive internal model of the world. For example, it might develop a model of a skull where it understands the "mouth" as a separate component it can open and close, without ever being explicitly trained on that action [00:06:15]. This deep understanding emerges bottom-up, without massive datasets.The secret is to abandon a fixed goal and embrace "deception" [00:08:42]—the idea that the stepping stones to a great discovery often don't look anything like the final result. Instead of optimizing for a target, the AI is built through an open-ended process of exploring what's "interesting" [00:09:15]. This creates a more flexible and adaptable foundation, a bit like how evolvability wins out in nature [00:10:30].The show concludes by arguing that this choice matters immensely. The "impostor" path may be hitting a wall, requiring insane amounts of money and energy for progress and failing to deliver true creativity or continual learning [00:13:00]. The ultimate message is a call to not put all our eggs in one basket [00:14:25]. We should explore these open-ended, creative paths to discover a more genuine form of intelligence, which may be found where we least expect it.REFS:Questioning Representational Optimism in Deep Learning:The Fractured Entangled Representation HypothesisAkarsh Kumar, Jeff Clune, Joel Lehman, Kenneth O. Stanleyhttps://arxiv.org/pdf/2505.11581Kenneth O. Stanley, Joel LehmanWhy Greatness Cannot Be Planned: The Myth of the Objectivehttps://amzn.to/44xLaXKOriginal show with Kenneth from 4 years ago:https://www.youtube.com/watch?v=lhYGXYeMq_EKenneth Stanley is SVP Open Endedness at Lila Scienceshttps://x.com/kenneth0stanleyAkarsh Kumar (MIT)https://akarshkumar.com/AND... Kenneth is HIRING (this is an OPPORTUNITY OF A LIFETIME!)Research Engineer: https://job-boards.greenhouse.io/lila/jobs/7890007002Research Scientist: https://job-boards.greenhouse.io/lila/jobs/8012245002Tim's Code visualisation of FER based on Akarsh repo: https://github.com/ecsplendid/ferTRANSCRIPT: https://app.rescript.info/public/share/YKAZzZ6lwZkjTLRpVJreOOxGhLI8y4m3fAyU8NSavx0

  continue reading

238 επεισόδια

Semua episode

×
 
Loading …

Καλώς ήλθατε στο Player FM!

Το FM Player σαρώνει τον ιστό για podcasts υψηλής ποιότητας για να απολαύσετε αυτή τη στιγμή. Είναι η καλύτερη εφαρμογή podcast και λειτουργεί σε Android, iPhone και στον ιστό. Εγγραφή για συγχρονισμό συνδρομών σε όλες τις συσκευές.

 

Οδηγός γρήγορης αναφοράς

Ακούστε αυτήν την εκπομπή ενώ εξερευνάτε
Αναπαραγωγή