Africa-focused technology, digital and innovation ecosystem insight and commentary.
…
continue reading
Το περιεχόμενο παρέχεται από το Linear Digressions, Ben Jaffe, and Katie Malone. Όλο το περιεχόμενο podcast, συμπεριλαμβανομένων των επεισοδίων, των γραφικών και των περιγραφών podcast, μεταφορτώνεται και παρέχεται απευθείας από τον Linear Digressions, Ben Jaffe, and Katie Malone ή τον συνεργάτη της πλατφόρμας podcast. Εάν πιστεύετε ότι κάποιος χρησιμοποιεί το έργο σας που προστατεύεται από πνευματικά δικαιώματα χωρίς την άδειά σας, μπορείτε να ακολουθήσετε τη διαδικασία που περιγράφεται εδώ https://el.player.fm/legal.
Player FM - Εφαρμογή podcast
Πηγαίνετε εκτός σύνδεσης με την εφαρμογή Player FM !
Πηγαίνετε εκτός σύνδεσης με την εφαρμογή Player FM !
Building a curriculum for educating data scientists: Interview with Prof. Xiao-Li Meng
MP3•Αρχική οθόνη επεισοδίου
Manage episode 252297961 series 2527355
Το περιεχόμενο παρέχεται από το Linear Digressions, Ben Jaffe, and Katie Malone. Όλο το περιεχόμενο podcast, συμπεριλαμβανομένων των επεισοδίων, των γραφικών και των περιγραφών podcast, μεταφορτώνεται και παρέχεται απευθείας από τον Linear Digressions, Ben Jaffe, and Katie Malone ή τον συνεργάτη της πλατφόρμας podcast. Εάν πιστεύετε ότι κάποιος χρησιμοποιεί το έργο σας που προστατεύεται από πνευματικά δικαιώματα χωρίς την άδειά σας, μπορείτε να ακολουθήσετε τη διαδικασία που περιγράφεται εδώ https://el.player.fm/legal.
As demand for data scientists grows, and it remains as relevant as ever that practicing data scientists have a solid methodological and technical foundation for their work, higher education institutions are coming to terms with what’s required to educate the next cohorts of data scientists. The heterogeneity and speed of the field makes it challenging for even the most talented and dedicated educators to know what a data science education “should” look like. This doesn’t faze Xiao-Li Meng, Professor of Statistics at Harvard University and founding Editor-in-Chief of the Harvard Data Science Review. He’s our interview guest in this episode, talking about the pedagogically distinct classes of data science and how he thinks about designing curricula for making anyone more data literate. From new initiatives in data science to dealing with data science FOMO, this wide-ranging conversation with a leading scholar gives us a lot to think about. Relevant links: https://hdsr.mitpress.mit.edu/
…
continue reading
291 επεισόδια
MP3•Αρχική οθόνη επεισοδίου
Manage episode 252297961 series 2527355
Το περιεχόμενο παρέχεται από το Linear Digressions, Ben Jaffe, and Katie Malone. Όλο το περιεχόμενο podcast, συμπεριλαμβανομένων των επεισοδίων, των γραφικών και των περιγραφών podcast, μεταφορτώνεται και παρέχεται απευθείας από τον Linear Digressions, Ben Jaffe, and Katie Malone ή τον συνεργάτη της πλατφόρμας podcast. Εάν πιστεύετε ότι κάποιος χρησιμοποιεί το έργο σας που προστατεύεται από πνευματικά δικαιώματα χωρίς την άδειά σας, μπορείτε να ακολουθήσετε τη διαδικασία που περιγράφεται εδώ https://el.player.fm/legal.
As demand for data scientists grows, and it remains as relevant as ever that practicing data scientists have a solid methodological and technical foundation for their work, higher education institutions are coming to terms with what’s required to educate the next cohorts of data scientists. The heterogeneity and speed of the field makes it challenging for even the most talented and dedicated educators to know what a data science education “should” look like. This doesn’t faze Xiao-Li Meng, Professor of Statistics at Harvard University and founding Editor-in-Chief of the Harvard Data Science Review. He’s our interview guest in this episode, talking about the pedagogically distinct classes of data science and how he thinks about designing curricula for making anyone more data literate. From new initiatives in data science to dealing with data science FOMO, this wide-ranging conversation with a leading scholar gives us a lot to think about. Relevant links: https://hdsr.mitpress.mit.edu/
…
continue reading
291 επεισόδια
Όλα τα επεισόδια
×Καλώς ήλθατε στο Player FM!
Το FM Player σαρώνει τον ιστό για podcasts υψηλής ποιότητας για να απολαύσετε αυτή τη στιγμή. Είναι η καλύτερη εφαρμογή podcast και λειτουργεί σε Android, iPhone και στον ιστό. Εγγραφή για συγχρονισμό συνδρομών σε όλες τις συσκευές.