Artwork

Το περιεχόμενο παρέχεται από το Let's Data. Όλο το περιεχόμενο podcast, συμπεριλαμβανομένων των επεισοδίων, των γραφικών και των περιγραφών podcast, μεταφορτώνεται και παρέχεται απευθείας από τον Let's Data ή τον συνεργάτη της πλατφόρμας podcast. Εάν πιστεύετε ότι κάποιος χρησιμοποιεί το έργο σας που προστατεύεται από πνευματικά δικαιώματα χωρίς την άδειά σας, μπορείτε να ακολουθήσετε τη διαδικασία που περιγράφεται εδώ https://el.player.fm/legal.
Player FM - Εφαρμογή podcast
Πηγαίνετε εκτός σύνδεσης με την εφαρμογή Player FM !

#023 - Gabriela de Queiroz - As mil e uma faces da Ciência de Dados

1:06:33
 
Μοίρασέ το
 

Manage episode 333301480 series 2896102
Το περιεχόμενο παρέχεται από το Let's Data. Όλο το περιεχόμενο podcast, συμπεριλαμβανομένων των επεισοδίων, των γραφικών και των περιγραφών podcast, μεταφορτώνεται και παρέχεται απευθείας από τον Let's Data ή τον συνεργάτη της πλατφόρμας podcast. Εάν πιστεύετε ότι κάποιος χρησιμοποιεί το έργο σας που προστατεύεται από πνευματικά δικαιώματα χωρίς την άδειά σας, μπορείτε να ακολουθήσετε τη διαδικασία που περιγράφεται εδώ https://el.player.fm/legal.

Neste episódio conversamos Gabriela de Queiroz, Cientista de Dados Chefe da IBM, líder em Estratégia e Inovações de IA. Ela é instrutora em cursos no Coursera, na edX e na Cognitive Class. Em 2012, ela fundou a R-Ladies, uma organização mundial para promover a diversidade na comunidade R, presente em mais de 200 cidades em mais de 55 países. Em 2019, ela fundou a AI Inclusive, uma organização global que está ajudando a aumentar a representação e a participação de minorias em Inteligência Artificial. Ela é formada em Estatística pela UERJ - Universidade do Estado do Rio de Janeiro, é mestre em Epidemiologia pela FIOCRUZ - Fundação Oswaldo Cruz, e também é mestre em Estatística pela California State University - East Bay.
Falamos sobre quais são desafios de um Head de Data Science em uma Big Tech como a IBM, a importância da interdisciplinaridade em Data Science, a história por trás da criação do R-Ladies, a inclusão em Inteligência Artificial e como reduzir injustiça nos algoritmos de Machine Learning, como contribuir para pacotes Python e R e muito mais!
Acesse nosso post para ter acesso a links e referências: https://medium.com/lets-data/

  continue reading

62 επεισόδια

Artwork
iconΜοίρασέ το
 
Manage episode 333301480 series 2896102
Το περιεχόμενο παρέχεται από το Let's Data. Όλο το περιεχόμενο podcast, συμπεριλαμβανομένων των επεισοδίων, των γραφικών και των περιγραφών podcast, μεταφορτώνεται και παρέχεται απευθείας από τον Let's Data ή τον συνεργάτη της πλατφόρμας podcast. Εάν πιστεύετε ότι κάποιος χρησιμοποιεί το έργο σας που προστατεύεται από πνευματικά δικαιώματα χωρίς την άδειά σας, μπορείτε να ακολουθήσετε τη διαδικασία που περιγράφεται εδώ https://el.player.fm/legal.

Neste episódio conversamos Gabriela de Queiroz, Cientista de Dados Chefe da IBM, líder em Estratégia e Inovações de IA. Ela é instrutora em cursos no Coursera, na edX e na Cognitive Class. Em 2012, ela fundou a R-Ladies, uma organização mundial para promover a diversidade na comunidade R, presente em mais de 200 cidades em mais de 55 países. Em 2019, ela fundou a AI Inclusive, uma organização global que está ajudando a aumentar a representação e a participação de minorias em Inteligência Artificial. Ela é formada em Estatística pela UERJ - Universidade do Estado do Rio de Janeiro, é mestre em Epidemiologia pela FIOCRUZ - Fundação Oswaldo Cruz, e também é mestre em Estatística pela California State University - East Bay.
Falamos sobre quais são desafios de um Head de Data Science em uma Big Tech como a IBM, a importância da interdisciplinaridade em Data Science, a história por trás da criação do R-Ladies, a inclusão em Inteligência Artificial e como reduzir injustiça nos algoritmos de Machine Learning, como contribuir para pacotes Python e R e muito mais!
Acesse nosso post para ter acesso a links e referências: https://medium.com/lets-data/

  continue reading

62 επεισόδια

Όλα τα επεισόδια

×
 
Loading …

Καλώς ήλθατε στο Player FM!

Το FM Player σαρώνει τον ιστό για podcasts υψηλής ποιότητας για να απολαύσετε αυτή τη στιγμή. Είναι η καλύτερη εφαρμογή podcast και λειτουργεί σε Android, iPhone και στον ιστό. Εγγραφή για συγχρονισμό συνδρομών σε όλες τις συσκευές.

 

Οδηγός γρήγορης αναφοράς