Artwork

Το περιεχόμενο παρέχεται από το HackerNoon. Όλο το περιεχόμενο podcast, συμπεριλαμβανομένων των επεισοδίων, των γραφικών και των περιγραφών podcast, μεταφορτώνεται και παρέχεται απευθείας από τον HackerNoon ή τον συνεργάτη της πλατφόρμας podcast. Εάν πιστεύετε ότι κάποιος χρησιμοποιεί το έργο σας που προστατεύεται από πνευματικά δικαιώματα χωρίς την άδειά σας, μπορείτε να ακολουθήσετε τη διαδικασία που περιγράφεται εδώ https://el.player.fm/legal.
Player FM - Εφαρμογή podcast
Πηγαίνετε εκτός σύνδεσης με την εφαρμογή Player FM !

Decoding Transformers' Superiority over RNNs in NLP Tasks

9:38
 
Μοίρασέ το
 

Manage episode 429693621 series 3474670
Το περιεχόμενο παρέχεται από το HackerNoon. Όλο το περιεχόμενο podcast, συμπεριλαμβανομένων των επεισοδίων, των γραφικών και των περιγραφών podcast, μεταφορτώνεται και παρέχεται απευθείας από τον HackerNoon ή τον συνεργάτη της πλατφόρμας podcast. Εάν πιστεύετε ότι κάποιος χρησιμοποιεί το έργο σας που προστατεύεται από πνευματικά δικαιώματα χωρίς την άδειά σας, μπορείτε να ακολουθήσετε τη διαδικασία που περιγράφεται εδώ https://el.player.fm/legal.

This story was originally published on HackerNoon at: https://hackernoon.com/decoding-transformers-superiority-over-rnns-in-nlp-tasks.
Explore the intriguing journey from Recurrent Neural Networks (RNNs) to Transformers in the world of Natural Language Processing in our latest piece: 'The Trans
Check more stories related to data-science at: https://hackernoon.com/c/data-science. You can also check exclusive content about #nlp, #transformers, #llms, #natural-language-processing, #large-language-models, #rnn, #machine-learning, #neural-networks, and more.
This story was written by: @artemborin. Learn more about this writer by checking @artemborin's about page, and for more stories, please visit hackernoon.com.
Despite Recurrent Neural Networks (RNNs) designed to mirror certain aspects of human cognition, they've been surpassed by Transformers in Natural Language Processing tasks. The primary reasons include RNNs' issues with the vanishing gradient problem, difficulty in capturing long-range dependencies, and training inefficiencies. The hypothesis that larger RNNs could mitigate these issues falls short in practice due to computational inefficiencies and memory constraints. On the other hand, Transformers leverage their parallel processing ability and self-attention mechanism to efficiently handle sequences and train larger models. Thus, the evolution of AI architectures is driven not only by biological plausibility but also by practical considerations such as computational efficiency and scalability.

  continue reading

126 επεισόδια

Artwork
iconΜοίρασέ το
 
Manage episode 429693621 series 3474670
Το περιεχόμενο παρέχεται από το HackerNoon. Όλο το περιεχόμενο podcast, συμπεριλαμβανομένων των επεισοδίων, των γραφικών και των περιγραφών podcast, μεταφορτώνεται και παρέχεται απευθείας από τον HackerNoon ή τον συνεργάτη της πλατφόρμας podcast. Εάν πιστεύετε ότι κάποιος χρησιμοποιεί το έργο σας που προστατεύεται από πνευματικά δικαιώματα χωρίς την άδειά σας, μπορείτε να ακολουθήσετε τη διαδικασία που περιγράφεται εδώ https://el.player.fm/legal.

This story was originally published on HackerNoon at: https://hackernoon.com/decoding-transformers-superiority-over-rnns-in-nlp-tasks.
Explore the intriguing journey from Recurrent Neural Networks (RNNs) to Transformers in the world of Natural Language Processing in our latest piece: 'The Trans
Check more stories related to data-science at: https://hackernoon.com/c/data-science. You can also check exclusive content about #nlp, #transformers, #llms, #natural-language-processing, #large-language-models, #rnn, #machine-learning, #neural-networks, and more.
This story was written by: @artemborin. Learn more about this writer by checking @artemborin's about page, and for more stories, please visit hackernoon.com.
Despite Recurrent Neural Networks (RNNs) designed to mirror certain aspects of human cognition, they've been surpassed by Transformers in Natural Language Processing tasks. The primary reasons include RNNs' issues with the vanishing gradient problem, difficulty in capturing long-range dependencies, and training inefficiencies. The hypothesis that larger RNNs could mitigate these issues falls short in practice due to computational inefficiencies and memory constraints. On the other hand, Transformers leverage their parallel processing ability and self-attention mechanism to efficiently handle sequences and train larger models. Thus, the evolution of AI architectures is driven not only by biological plausibility but also by practical considerations such as computational efficiency and scalability.

  continue reading

126 επεισόδια

Όλα τα επεισόδια

×
 
Loading …

Καλώς ήλθατε στο Player FM!

Το FM Player σαρώνει τον ιστό για podcasts υψηλής ποιότητας για να απολαύσετε αυτή τη στιγμή. Είναι η καλύτερη εφαρμογή podcast και λειτουργεί σε Android, iPhone και στον ιστό. Εγγραφή για συγχρονισμό συνδρομών σε όλες τις συσκευές.

 

Οδηγός γρήγορης αναφοράς

Ακούστε αυτήν την εκπομπή ενώ εξερευνάτε
Αναπαραγωγή