Artwork

Το περιεχόμενο παρέχεται από το Jared Tippets and Eric Kirby, Jared Tippets, and Eric Kirby. Όλο το περιεχόμενο podcast, συμπεριλαμβανομένων των επεισοδίων, των γραφικών και των περιγραφών podcast, μεταφορτώνεται και παρέχεται απευθείας από τον Jared Tippets and Eric Kirby, Jared Tippets, and Eric Kirby ή τον συνεργάτη της πλατφόρμας podcast. Εάν πιστεύετε ότι κάποιος χρησιμοποιεί το έργο σας που προστατεύεται από πνευματικά δικαιώματα χωρίς την άδειά σας, μπορείτε να ακολουθήσετε τη διαδικασία που περιγράφεται εδώ https://el.player.fm/legal.
Player FM - Εφαρμογή podcast
Πηγαίνετε εκτός σύνδεσης με την εφαρμογή Player FM !

S2 - E32 - Persistence Scorecards (Data)

9:05
 
Μοίρασέ το
 

Manage episode 448292069 series 3405647
Το περιεχόμενο παρέχεται από το Jared Tippets and Eric Kirby, Jared Tippets, and Eric Kirby. Όλο το περιεχόμενο podcast, συμπεριλαμβανομένων των επεισοδίων, των γραφικών και των περιγραφών podcast, μεταφορτώνεται και παρέχεται απευθείας από τον Jared Tippets and Eric Kirby, Jared Tippets, and Eric Kirby ή τον συνεργάτη της πλατφόρμας podcast. Εάν πιστεύετε ότι κάποιος χρησιμοποιεί το έργο σας που προστατεύεται από πνευματικά δικαιώματα χωρίς την άδειά σας, μπορείτε να ακολουθήσετε τη διαδικασία που περιγράφεται εδώ https://el.player.fm/legal.

In volume one of ASCEND to Higher Retention Rates, we discussed the value and power of having all new students complete a pre-arrival questionnaire (Tippets & Kirby, 2022). This allows us to capture lots of important insights about a student’s background, motivations, and commitment to higher education. Using the data from this survey, and combining it with other data collected from the application process, our peer mentors create “scorecards” for each student to help us prioritize our outreach and support.

Many institutions have purchased sophisticated data analytic software that ingests data to predict the likelihood of a student persisting and graduating. These are fabulous tools, but they are expensive and sometimes complicated to use. And, sometimes the predictions from these tools don’t match the outcomes or what feels right when working with the students.

As an alternate approach to predicting the likelihood of a student retaining, we have our peer mentors use the available data we have to create scorecards for each student that results in an individual score for each student. We have found the following data points to be powerful predictors of persistence and use these scores to help guide our outreach and support to students in the early weeks of their first semester:

  • high school GPAs
  • first-generation status
  • ACT/SAT scores
  • intent to transfer
  • race/ethnicity
  • residency status
  • living on campus or off campus

In the end, the method doesn’t have to be exact or overly complex. The key is to look at student data and use that data to identify students who will need some additional support and care. Then, go to work.

  continue reading

136 επεισόδια

Artwork
iconΜοίρασέ το
 
Manage episode 448292069 series 3405647
Το περιεχόμενο παρέχεται από το Jared Tippets and Eric Kirby, Jared Tippets, and Eric Kirby. Όλο το περιεχόμενο podcast, συμπεριλαμβανομένων των επεισοδίων, των γραφικών και των περιγραφών podcast, μεταφορτώνεται και παρέχεται απευθείας από τον Jared Tippets and Eric Kirby, Jared Tippets, and Eric Kirby ή τον συνεργάτη της πλατφόρμας podcast. Εάν πιστεύετε ότι κάποιος χρησιμοποιεί το έργο σας που προστατεύεται από πνευματικά δικαιώματα χωρίς την άδειά σας, μπορείτε να ακολουθήσετε τη διαδικασία που περιγράφεται εδώ https://el.player.fm/legal.

In volume one of ASCEND to Higher Retention Rates, we discussed the value and power of having all new students complete a pre-arrival questionnaire (Tippets & Kirby, 2022). This allows us to capture lots of important insights about a student’s background, motivations, and commitment to higher education. Using the data from this survey, and combining it with other data collected from the application process, our peer mentors create “scorecards” for each student to help us prioritize our outreach and support.

Many institutions have purchased sophisticated data analytic software that ingests data to predict the likelihood of a student persisting and graduating. These are fabulous tools, but they are expensive and sometimes complicated to use. And, sometimes the predictions from these tools don’t match the outcomes or what feels right when working with the students.

As an alternate approach to predicting the likelihood of a student retaining, we have our peer mentors use the available data we have to create scorecards for each student that results in an individual score for each student. We have found the following data points to be powerful predictors of persistence and use these scores to help guide our outreach and support to students in the early weeks of their first semester:

  • high school GPAs
  • first-generation status
  • ACT/SAT scores
  • intent to transfer
  • race/ethnicity
  • residency status
  • living on campus or off campus

In the end, the method doesn’t have to be exact or overly complex. The key is to look at student data and use that data to identify students who will need some additional support and care. Then, go to work.

  continue reading

136 επεισόδια

Όλα τα επεισόδια

×
 
Loading …

Καλώς ήλθατε στο Player FM!

Το FM Player σαρώνει τον ιστό για podcasts υψηλής ποιότητας για να απολαύσετε αυτή τη στιγμή. Είναι η καλύτερη εφαρμογή podcast και λειτουργεί σε Android, iPhone και στον ιστό. Εγγραφή για συγχρονισμό συνδρομών σε όλες τις συσκευές.

 

Οδηγός γρήγορης αναφοράς