Artwork

Το περιεχόμενο παρέχεται από το The Spotlight Report. Όλο το περιεχόμενο podcast, συμπεριλαμβανομένων των επεισοδίων, των γραφικών και των περιγραφών podcast, μεταφορτώνεται και παρέχεται απευθείας από τον The Spotlight Report ή τον συνεργάτη της πλατφόρμας podcast. Εάν πιστεύετε ότι κάποιος χρησιμοποιεί το έργο σας που προστατεύεται από πνευματικά δικαιώματα χωρίς την άδειά σας, μπορείτε να ακολουθήσετε τη διαδικασία που περιγράφεται εδώ https://el.player.fm/legal.
Player FM - Εφαρμογή podcast
Πηγαίνετε εκτός σύνδεσης με την εφαρμογή Player FM !

Dr. Maham Aftab on Modal Integration

50:47
 
Μοίρασέ το
 

Manage episode 247979299 series 2572690
Το περιεχόμενο παρέχεται από το The Spotlight Report. Όλο το περιεχόμενο podcast, συμπεριλαμβανομένων των επεισοδίων, των γραφικών και των περιγραφών podcast, μεταφορτώνεται και παρέχεται απευθείας από τον The Spotlight Report ή τον συνεργάτη της πλατφόρμας podcast. Εάν πιστεύετε ότι κάποιος χρησιμοποιεί το έργο σας που προστατεύεται από πνευματικά δικαιώματα χωρίς την άδειά σας, μπορείτε να ακολουθήσετε τη διαδικασία που περιγράφεται εδώ https://el.player.fm/legal.
In this weeks episode we sit down with Maham Aftab, who has an extensive background in the sciences as well as activism for a variety of causes. We discuss her most recent publication, in which she used Chebyshev gradient polynomials as a basis set for modal integration. She discusses the recursive nature of the polynomial set which allowed for her method to generate a high number of fitting polynomials. The integration’s ortho-normality is discussed, as well as its unique benefits and how it fits into the general universe of integration methods for slope data. Additionally, Maham speaks about her academic experience and her work in activism. Resources: Aftab’s Paper: Maham Aftab, James H. Burge, Greg A. Smith, Logan Graves, Chang-jin Oh, and Dae Wook Kim, “Modal Data Processing for High Resolution Deflectometry,” Int. J. of Precis. Eng. and Manuf.-Green Tech. (2018). (in press) Southwell Integration Paper: https://www.osapublishing.org/josa/abstract.cfm?uri=josa-70-8-998 --- Support this podcast: https://podcasters.spotify.com/pod/show/the-spotlight-report/support
  continue reading

49 επεισόδια

Artwork
iconΜοίρασέ το
 
Manage episode 247979299 series 2572690
Το περιεχόμενο παρέχεται από το The Spotlight Report. Όλο το περιεχόμενο podcast, συμπεριλαμβανομένων των επεισοδίων, των γραφικών και των περιγραφών podcast, μεταφορτώνεται και παρέχεται απευθείας από τον The Spotlight Report ή τον συνεργάτη της πλατφόρμας podcast. Εάν πιστεύετε ότι κάποιος χρησιμοποιεί το έργο σας που προστατεύεται από πνευματικά δικαιώματα χωρίς την άδειά σας, μπορείτε να ακολουθήσετε τη διαδικασία που περιγράφεται εδώ https://el.player.fm/legal.
In this weeks episode we sit down with Maham Aftab, who has an extensive background in the sciences as well as activism for a variety of causes. We discuss her most recent publication, in which she used Chebyshev gradient polynomials as a basis set for modal integration. She discusses the recursive nature of the polynomial set which allowed for her method to generate a high number of fitting polynomials. The integration’s ortho-normality is discussed, as well as its unique benefits and how it fits into the general universe of integration methods for slope data. Additionally, Maham speaks about her academic experience and her work in activism. Resources: Aftab’s Paper: Maham Aftab, James H. Burge, Greg A. Smith, Logan Graves, Chang-jin Oh, and Dae Wook Kim, “Modal Data Processing for High Resolution Deflectometry,” Int. J. of Precis. Eng. and Manuf.-Green Tech. (2018). (in press) Southwell Integration Paper: https://www.osapublishing.org/josa/abstract.cfm?uri=josa-70-8-998 --- Support this podcast: https://podcasters.spotify.com/pod/show/the-spotlight-report/support
  continue reading

49 επεισόδια

Όλα τα επεισόδια

×
 
Loading …

Καλώς ήλθατε στο Player FM!

Το FM Player σαρώνει τον ιστό για podcasts υψηλής ποιότητας για να απολαύσετε αυτή τη στιγμή. Είναι η καλύτερη εφαρμογή podcast και λειτουργεί σε Android, iPhone και στον ιστό. Εγγραφή για συγχρονισμό συνδρομών σε όλες τις συσκευές.

 

Οδηγός γρήγορης αναφοράς