Artwork

Το περιεχόμενο παρέχεται από το Brian Carter. Όλο το περιεχόμενο podcast, συμπεριλαμβανομένων των επεισοδίων, των γραφικών και των περιγραφών podcast, μεταφορτώνεται και παρέχεται απευθείας από τον Brian Carter ή τον συνεργάτη της πλατφόρμας podcast. Εάν πιστεύετε ότι κάποιος χρησιμοποιεί το έργο σας που προστατεύεται από πνευματικά δικαιώματα χωρίς την άδειά σας, μπορείτε να ακολουθήσετε τη διαδικασία που περιγράφεται εδώ https://el.player.fm/legal.
Player FM - Εφαρμογή podcast
Πηγαίνετε εκτός σύνδεσης με την εφαρμογή Player FM !

Let's Get Activated! Why Non-Linear Activation Matters

7:15
 
Μοίρασέ το
 

Fetch error

Hmmm there seems to be a problem fetching this series right now. Last successful fetch was on November 09, 2024 13:09 (6M ago)

What now? This series will be checked again in the next day. If you believe it should be working, please verify the publisher's feed link below is valid and includes actual episode links. You can contact support to request the feed be immediately fetched.

Manage episode 447355898 series 3605861
Το περιεχόμενο παρέχεται από το Brian Carter. Όλο το περιεχόμενο podcast, συμπεριλαμβανομένων των επεισοδίων, των γραφικών και των περιγραφών podcast, μεταφορτώνεται και παρέχεται απευθείας από τον Brian Carter ή τον συνεργάτη της πλατφόρμας podcast. Εάν πιστεύετε ότι κάποιος χρησιμοποιεί το έργο σας που προστατεύεται από πνευματικά δικαιώματα χωρίς την άδειά σας, μπορείτε να ακολουθήσετε τη διαδικασία που περιγράφεται εδώ https://el.player.fm/legal.

Let's get RE(a)L, U!

This research paper explores the impact of different activation functions, specifically ReLU and L-ReLU, on the performance of deep learning models. The authors investigate how the choice of activation function, along with factors like the number of parameters and the shape of the model architecture, influence model accuracy across various data domains (continuous, categorical with and without transfer learning). The study concludes that L-ReLU is more effective than ReLU when the number of parameters is relatively small, while ReLU generally performs better with larger models. The paper also highlights the importance of considering the specific data domain and the use of pre-trained models for transfer learning when selecting the most suitable activation function.

Read more: https://github.com/christianversloot/machine-learning-articles/blob/main/why-nonlinear-activation-functions-improve-ml-performance-with-tensorflow-example.md

  continue reading

71 επεισόδια

Artwork
iconΜοίρασέ το
 

Fetch error

Hmmm there seems to be a problem fetching this series right now. Last successful fetch was on November 09, 2024 13:09 (6M ago)

What now? This series will be checked again in the next day. If you believe it should be working, please verify the publisher's feed link below is valid and includes actual episode links. You can contact support to request the feed be immediately fetched.

Manage episode 447355898 series 3605861
Το περιεχόμενο παρέχεται από το Brian Carter. Όλο το περιεχόμενο podcast, συμπεριλαμβανομένων των επεισοδίων, των γραφικών και των περιγραφών podcast, μεταφορτώνεται και παρέχεται απευθείας από τον Brian Carter ή τον συνεργάτη της πλατφόρμας podcast. Εάν πιστεύετε ότι κάποιος χρησιμοποιεί το έργο σας που προστατεύεται από πνευματικά δικαιώματα χωρίς την άδειά σας, μπορείτε να ακολουθήσετε τη διαδικασία που περιγράφεται εδώ https://el.player.fm/legal.

Let's get RE(a)L, U!

This research paper explores the impact of different activation functions, specifically ReLU and L-ReLU, on the performance of deep learning models. The authors investigate how the choice of activation function, along with factors like the number of parameters and the shape of the model architecture, influence model accuracy across various data domains (continuous, categorical with and without transfer learning). The study concludes that L-ReLU is more effective than ReLU when the number of parameters is relatively small, while ReLU generally performs better with larger models. The paper also highlights the importance of considering the specific data domain and the use of pre-trained models for transfer learning when selecting the most suitable activation function.

Read more: https://github.com/christianversloot/machine-learning-articles/blob/main/why-nonlinear-activation-functions-improve-ml-performance-with-tensorflow-example.md

  continue reading

71 επεισόδια

Όλα τα επεισόδια

×
 
Loading …

Καλώς ήλθατε στο Player FM!

Το FM Player σαρώνει τον ιστό για podcasts υψηλής ποιότητας για να απολαύσετε αυτή τη στιγμή. Είναι η καλύτερη εφαρμογή podcast και λειτουργεί σε Android, iPhone και στον ιστό. Εγγραφή για συγχρονισμό συνδρομών σε όλες τις συσκευές.

 

Οδηγός γρήγορης αναφοράς

Ακούστε αυτήν την εκπομπή ενώ εξερευνάτε
Αναπαραγωγή